
FUNCTIONS
PRACTICE WITH NESTED LOOPS
TEST DRIVEN CODE DEVELOPMENT
Problem Solving with Computers-I

Infinite loops
for(int y=0;y<10;y--)
 cout<<“Print forever\n";

int y=0;
for(;;y++)
 cout<<“Print forever\n";

int y = 0;
for(;y<10;);
 y++;

int y=0;
while(y<10)
 cout<<“Print forever\n";

int y=0;
while(y=2)
 y++;

Given some integer n (may be positive or negative)
Which code that is not equivalent to the other two?  

for(int x = 0; x < n; x++) {
 cout<<x <<endl;
}

A.

B.

C.

int x = 0;
while(x < n) {
 cout<< x << endl;
 x++;
}

int x = 0;
do{
 cout<< x<< endl;
 x++;
} while(x < n);

D. They are ALL equivalent

Review: Loops

Functions: Basic abstraction in programs
• Functions keep programs DRY!
• Three steps when using functions

1. DECLARE

2. DEFINE

3. CALL

Write a FUNCTION that calculates the series: 
1+ 1/2+ 1/3+ ….1/n, where `n` is a parameter passed to
the program

Sample run of the program:

$./sumseries 2
Sum of the first 2 terms is : 1.500

$./sumseries 3
Sum of the first 3 terms is : 1.833

ASCII art! Nested loops and functions

./drawSquare
Enter the width of the square
5

Write a FUNCTION that draws a square of a given width, and use it in

a program with the following runtime behavior:

Draw a triangle

 ./drawTriangle
Enter the length of the base
5

*
**

Which line of the drawSquare code

(show on the right) would you modify

to draw a right angled triangle

 5 void drawSquare(int side){//A
 6
 7 for(int j = 0; j < side; j++){//B
 8 for(int i=0; i < side; i++){//C
 9 cout<<"*";
 10 }
 11 cout<<endl;
 12 }
 13 cout<<endl;
 14
 15 }
//D: A and B
//E: A and C

The runtime Stack
Stack: A region in program memory to “manage” local variables
Every time a function is called, its local variables are created on the stack
When the function returns, local variables are removed from the stack
Local variables are created and deleted on the stack using a Last in First Out principle
int sum(int a, int b){

cout<< a+b;
}

int main(){
int result =0;

int x =10, y =20;
result = sum(x, y);

cout<<result;

}

Print vs return
What is the output of the following code
int sum(int a, int b){
 return a+b;
}
int main(){
 int result =0;
 int x =10, y =20;
 result = sum(x, y);
 cout<<result;
}

Function call mechanics
What is the output of the following code
int sum(int a, int b){

int result= a+b;
exit(0);

}

int main(){
int result =0;
int x =10, y =20;
result = sum(x, y);
cout<<result;

}

